Underwater optical wireless communication as a means of improving the efficiency of information and telecommunication support for deep-sea research

Authors

DOI:

https://doi.org/10.47813/2782-2818-2023-3-3-0132-0145

Keywords:

telecommunications, data transmission rate, hydroacoustic channel, underwater optical wireless communication, real-time mode, Booger-Lambert-Behr law, laser diodes, light flux.

Abstract

Sonar, radio frequency and optical wave systems are technologies that are used today to carry out underwater wireless communication. However, due to the need to deliver a large number of video images from autonomous uninhabited underwater vehicles to the coordination center, the question arose of organizing a communication channel with a data transmission rate of at least 1 Mbps or more, while these traditional systems can provide a data flow rate of up to 50 kbps. Therefore, the development of reliable and efficient wireless underwater communication channels is of great interest today in the scientific, military and industrial sectors, and especially in deep-sea exploration. UOWC underwater optical wireless communication, which uses a spectral range of 450-600 nm, is the most modern technology. In the interests of controlling autonomous uninhabited underwater vehicles, it is proposed to use UOWC as a channel for transmitting video images from on-board cameras. The article justifies the expediency of using laser technologies for organizing the UOWC channel in order to increase the range and speed of data transmission relative to traditional communication methods, a structural diagram of UOWC is presented, calculated formulas for the optical power of laser radiation at the input of the receiving device, as well as the absorption coefficient of light radiation in both pure and cloudy water are given. There are several options for practical application of UOWC channels in real-world conditions.

Author Biography

Yu. G. Ksenofontov

Yuriy Ksenofontov, Ph.D. of Engineering Sciences, associate professor, associate professor of department, Admiral Makarov State University of Maritime and Inland Shipping, Institute «Maritime Academy», Faculty of Navigation and Communications, Maritime Radio communication department, St. Petersburg, Russian Federation

References

Датьев И. О. Развитие инфотелекоммуникационных систем арктических территорий. Труды Кольского научного центра РАН. 2014; 5(24): 41-63.

Кожемякин И. В., Блинков А. П., Рождественский К. В., Мелентьев В. Д., Занин В. Ю. Перспективные платформы морской робототехнической системы и некоторые варианты их применения. Известия ЮФУ. Технические науки. 2016; 1(174): 59-66.

Антропов Д. А. Проблемы эксплуатации множества группировок

радиоэлектронных средств различного назначения в ходе формирования

современной информационно-телекоммуникационной инфраструктуры

арктических регионов страны. Арктика: экология и экономика. 2014; 2(14): 67-78.

Мирошников В. И., Бутко П. А., Жуков Г. А. Составной тракт доведения информации до робототехнических комплексов в северных морях. Техника средств связи. 2019; 3(147): 2-26.

Ляхов Д. Г. Современные задачи подводной робототехники. Подводные исследования и робототехника. 2012; 1(13): 15-23.

Мартынов В.Л., Дорошенко В.И., Божук Н.М., Ксенофонтов Ю.Г. Лазерные технологии передачи данных в водной среде в вопросах организации подводных беспроводных сетей связи. Морские интеллектуальные технологии. Научный журнал. 2021; 2(1): 80-85. https://doi.org/10.37220/MIT.2021.52.2.012

Мартынов В. Л., Голосной А. С., Егоров С. В. Беспроводной оптический канал связи в водной среде как альтернатива связи по кабелю. Известия Российской Академии ракетных и артиллерийских наук. 2016; 4(94): 126-130.

Ксенофонтов Ю.Г. К вопросам организации и оценки эффективности беспроводной лазерной системы связи с подводными робототехническими комплексами. Достижения науки и технологий-ДНиТ-11-2023: сборник научных статей по материалам II Всероссийской научной конференции. 27–28 февраля 2023. Том Выпуск 7. Красноярск; 2023: 455-461.

J. Xu, Y. Song, X. Yu, A. Lin, M. Kong, J. Han, N. Deng. Underwater wireless transmission of highspeed QAM-OFDM signals using a compact red-light laser. Optics express. 2016; 24(8): 8097-8109. https://doi.org/10.1364/OE.24.008097

L.K. Gkoura, G.D. Roumelas, H.E. Nistazakis, H.G. Sandalidis, A. Vavoulas, A.D. Tsigopoulos, G.S. Tombras. Underwater Optical Wireless Communication Systems: A Concise Review, Turbulence Modelling Approaches - Current State, Development Prospects, Applications. Konstantin Volkov, IntechOpen. 2017. https://doi.org/10.5772/67915

Ксенофонтов Ю. Г. Инновационный подход к вопросам организации системы дальней связи и управления подводными робототехническими комплексами контроля экологического состояния акваторий Северного морского пути. Наука, технологии, общество: экологический инжиниринг в интересах устойчивого развития территорий: сборник научных трудов III Всероссийской научной конференции с международным участием. 16–18 ноября 2022. Красноярск; 2022: 560-570.

Мартынов В.Л., Ксенофонтов Ю.Г. Современные бортовые системы сейсморазведки для оснащения подводных робототехнических комплексов. Сервис безопасности в России: опыт, проблемы, перспективы. Арктика – регион стратегических интересов: правовая политика и современные технологии обеспечения безопасности в Арктическом регионе: материалы международной научно-практической конференции. 2020: 246-248.

REFERENCES

Dat'ev I. O. Razvitie infotelekommunikatsionnykh sistem arkticheskikh territorii [Development of infotelecommunication systems of Arctic territories]. Trudy Kol'skogo nauchnogo tsentra RAN. 2014; 5(24): 41-63 (in Russian).

Kozhemyakin I. V., Blinkov A. P., Rozhdestvenskii K. V., Melent'ev V. D., Zanin V. Yu. Perspektivnye platformy morskoi robototekhnicheskoi sistemy i nekotorye varianty ikh primeneniya [Promising Marine Robotic System Platforms and Some Applications]. Izvestiya YuFU. Tekhnicheskie nauki. 2016; 1(174): 59-66 (in Russian).

Antropov D. A. Problemy ekspluatatsii mnozhestva gruppirovok radioelektronnykh sredstv razlichnogo naznacheniya v khode formirovaniya sovremennoi informatsionno-telekommunikatsionnoi infrastruktury arkticheskikh regionov strany [Problems of exploiting multiple groupings radioelectronic means of various purposes during the formation modern information and telecommunication infrastructure arctic regions of the country]. Arktika: ekologiya i ekonomika. 2014; 2(14): 67-78 (in Russian).

Miroshnikov V. I., Butko P. A., Zhukov G. A. Sostavnoi trakt dovedeniya informatsii do robototekhnicheskikh kompleksov v severnykh moryakh strany [Composite route of information communication to robotic complexes in the northern seas]. Tekhnika sredstv svyazi. 2019; 3(147): 2-26 (in Russian).

Lyakhov D. G. Sovremennye zadachi podvodnoi robototekhniki [Modern problems of underwater robotics]. Podvodnye issledovaniya i robototekhnika. 2012; 1(13): 15-23 (in Russian).

Martynov V.L., Doroshenko V.I., Bozhuk N.M., Ksenofontov Yu.G. Lazernye tekhnologii peredachi dannykh v vodnoi srede v voprosakh organizatsii podvodnykh besprovodnykh setei svyazi [Water-Based Laser Technologies for Underwater Wireless Communications]. Morskie intellektual'nye tekhnologii. Nauchnyi zhurnal. 2021; 2(1): 80-85 (in Russian). https://doi.org/10.37220/MIT.2021.52.2.012 DOI: https://doi.org/10.37220/MIT.2021.52.2.012

Martynov V. L., Golosnoi A. S., Egorov S. V. Besprovodnoi opticheskii kanal svyazi v vodnoi srede kak al'ternativa svyazi po kabelyu [Wireless optical communication channel in water as an alternative to cable communication]. Izvestiya Rossiiskoi Akademii raketnykh i artilleriiskikh nauk. 2016; 4(94): 126-130 (in Russian).

Ksenofontov Yu.G. K voprosam organizatsii i otsenki effektivnosti besprovodnoi lazernoi sistemy svyazi s podvodnymi robototekhnicheskimi kompleksami [To the organization and evaluation of the effectiveness of a wireless laser communication system with underwater robotic complexes]. Dostizheniya nauki i tekhnologii-DNiT-11-2023: sbornik nauchnykh statei po materialam II Vserossiiskoi nauchnoi konferentsii. 27–28 fevralya 2023. Tom Vypusk 7. Krasnoyarsk; 2023: 455-461 (in Russian).

J. Xu, Y. Song, X. Yu, A. Lin, M. Kong, J. Han, N. Deng. Underwater wireless transmission of highspeed QAM-OFDM signals using a compact red-light laser. Optics express. 2016; 24(8): 8097-8109. https://doi.org/10.1364/OE.24.008097 DOI: https://doi.org/10.1364/OE.24.008097

L.K. Gkoura, G.D. Roumelas, H.E. Nistazakis, H.G. Sandalidis, A. Vavoulas, A.D. Tsigopoulos, G.S. Tombras. Underwater Optical Wireless Communication Systems: A Concise Review, Turbulence Modelling Approaches - Current State, Development Prospects, Applications. Konstantin Volkov, IntechOpen. 2017. https://doi.org/10.5772/67915 DOI: https://doi.org/10.5772/67915

Ksenofontov Yu. G. Innovatsionnyi podkhod k voprosam organizatsii sistemy dal'nei svyazi i upravleniya podvodnymi robototekhnicheskimi kompleksami kontrolya ekologicheskogo sostoyaniya akvatorii Severnogo morskogo puti [Innovative approach to the organization of the long-distance communication system and control of underwater robotic systems for monitoring the ecological state of the waters of the Northern Sea Route]. Nauka, tekhnologii, obshchestvo: ekologicheskii inzhiniring v interesakh ustoichivogo razvitiya territorii: sbornik nauchnykh trudov III Vserossiiskoi nauchnoi konferentsii s mezhdunarodnym uchastiem. 16–18 noyabrya 2022. Krasnoyarsk; 2022: 560-570 (in Russian).

Martynov V.L., Ksenofontov Yu.G. Sovremennye bortovye sistemy seismorazvedki dlya osnashcheniya podvodnykh robototekhnicheskikh kompleksov [Modern on-board seismic systems for equipping underwater robotic systems]. Servis bezopasnosti v Rossii: opyt, problemy, perspektivy. Arktika – region strategicheskikh interesov: pravovaya politika i sovremennye tekhnologii obespecheniya bezopasnosti v Arkticheskom regione: materialy mezhdunarodnoi nauchno-prakticheskoi konferentsii. 2020: 246-248 (in Russian).

Published

2023-09-20

How to Cite

Ksenofontov, Y. G. (2023). Underwater optical wireless communication as a means of improving the efficiency of information and telecommunication support for deep-sea research. Modern Innovations, Systems and Technologies, 3(3), 0132–0145. https://doi.org/10.47813/2782-2818-2023-3-3-0132-0145

Conference Proceedings Volume

Section

Electronics, measuring equipment, radio engineering and communication