Современные инновации, системы и технологии - Modern Innovations, Systems and Technologies https://oajmist.com/index.php/12 <p><strong>Журнал "Modern Innovations, Systems and Technologies" - "Современные инновации, системы и технологии"</strong> (сетевое издание) издаётся редакцией ООО "Сибирский научный центр ДНИТ" с 2021 года.</p> <p><strong>Цель журнала</strong> заключается как в вовлечении российских исследователей в международное научное пространство, что обеспечивается внедрением современных международных издательских практик, так и в содействии научной коллаборации российских и зарубежных авторов за счет знакомства иностранных исследователей с российскими научными разработками и инновациями, не имеющими аналогов за рубежом.</p> <p>К публикации принимаются статьи проблемного и научно-практического характера, описывающие результаты исследований в области применения современных инноваций, систем и технологий в наукоемком высокотехнологичном производстве, в отраслях аэрокосмического, энергетического, химического и нефтегазового машиностроения, в области экономики и организации производства, в современных направлениях исследований сложных технических и информационных систем, а также обзоры, содержащие сравнительный анализ применения современных инноваций, существующих систем и технологий.</p> <p>Редакция размещает научные статьи в открытых репозиториях с целью повышения доступности научных публикаций.</p> <p><strong>Сразу после размещения на сайте статья считается опубликованной по принципу <a href="https://oajmist.com/index.php/12/online_first">Online First</a>.</strong></p> <p>Каждая статья доступна как отдельный, самостоятельный документ в сети Интернет и имеет свой, уникальный URL. Каждой статье присваивается уникальный индекс DOI и EDN.</p> <p>Сетевой формат журнала и принцип открытого доступа позволяет обеспечить самый широкий охват читательской и авторской аудитории, что способствует высокому уровню цитируемости опубликованных статей.</p> <p>При использовании материалов ссылка на журнал и авторов статей обязательна.</p> <p><strong>Главный редактор журнала</strong> - Игорь Владимирович Ковалев, доктор технических наук, профессор.</p> <p>СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций, регистрационный номер <a href="https://rkn.gov.ru/mass-communications/reestr/media/?id=873391&amp;page=" target="_blank" rel="noopener">Эл № ФС77-81399</a> от 30.06.2021 (электронная версия).</p> <p><strong>eISSN:</strong> 2782-2818 </p> ru-RU <p>Журнал MIST - «Modern Innovations, Systems and Technologies» / «Современные инновации, системы и технологии» публикует материалы на условиях лицензии CreativeCommons Attribution 4.0 International (CC BY 4.0), размещенной на официальном сайте некоммерческой корпорации Creative Commons: <a href="http://creativecommons.org/licenses/by/4.0/" rel="license"><img src="https://i.creativecommons.org/l/by/4.0/88x31.png" alt="Creative Commons License" /></a><br />This work is licensed under a <a href="http://creativecommons.org/licenses/by/4.0/" rel="license">Creative Commons Attribution 4.0 International License</a>.</p> <p>Это означает, что пользователи могут копировать и распространять материалы на любом носителе и в любом формате, адаптировать и преобразовывать тексты, использовать контент для любых целей, в том числе коммерческих. При этом должны соблюдаться условия использования — указание автора оригинального произведения и источника: следует указывать выходные данные статей, предоставлять ссылку на источник, а также указывать, какие изменения были внесены.</p> oajmist@domnit.ru (Игорь Владимирович Ковалев / Dr Igor Kovalev) oajmist@domnit.ru (Анна Анатольевна Ворошилова / Anna Voroshilova) Sun, 30 Jun 2024 00:00:00 +0300 OJS 3.3.0.13 http://blogs.law.harvard.edu/tech/rss 60 Оптимизация пробоподготовки при определении жирнокислотного состава ультрапастеризованного молока https://oajmist.com/index.php/12/article/view/266 <p>С целью удешевления себестоимости молока некоторые недобросовестные производители изготавливают фальсифицированные молочные продукты, потребление которых может привести к нарушениям в питании: человек получает чувство насыщения, но недополучет те макро- и микронутриенты, на которые рассчитывает. Определение жирно-кислотного состава молочной продукции является эффективным методом выявления фальсификации. При ультрапастеризации молоко гомогенизируется под давлением и подвергается обработке при сверхвысокой температуре с последующей асептической упаковкой. Из-за гомогенности ультрапастеризованного молока возникают проблемы с экстракцией жира при проведении хроматографического анализа по определению жирно-кислотного состава. В статье приводятся результаты эксперимента, которые подтверждают, что при предварительном нагревании ультрапастеризованного молока до 45 <sup>0</sup>С жировая фракция при центрифугировании хорошо разделяется. Для проверки работоспособности методики проведена оценка показателей качества результатов анализа на примере пальмитиновой кислоты, которая показала, что ее метрологические характеристики ниже, чем в базовом нормативном документе (ГОСТ 32915), что позволяет рекомендовать ее к применению на практике.</p> Э. А. Аухадиева, Д. Э. Мусабиров, Е. Е. Зеленковская, М. В. Курилов, Э. Н. Усманова Copyright (c) 2024 Э. А. Аухадиева, Д. Э. Мусабиров, Е. Е. Зеленковская, М. В. Курилов, Э. Н. Усманова https://creativecommons.org/licenses/by/4.0 https://oajmist.com/index.php/12/article/view/266 Sat, 13 Apr 2024 00:00:00 +0300 Изучение совместной фильтрации с помощью метода K-ближайших соседей и факторизации неотрицательной матрицы https://oajmist.com/index.php/12/article/view/268 <p>Алгоритмы совместной фильтрации (CF) вызывают большой интерес в рекомендательных системах из-за их способности давать персонализированные рекомендации, используя данные о взаимодействии пользователя с элементами контента. В этой статье мы подробно исследуем два популярных метода CF — регрессию K-ближайших соседей (KNN) и неотрицательную матричную факторизацию (NMF) с целью комбинации их при совместной фильтрации. Наша цель — оценить их производительность на наборе данных MovieLens 1M и предоставить информацию об их преимуществах и недостатках. В работе дано подробное объяснение значения рекомендательных систем в современных условиях потребления контента. Изучается сложность совместной фильтрации и то, как она использует предыдущий выбор пользователей для выработки индивидуальных рекомендаций. Затем дается описание подходов на основе KNN-регрессии и NMF, рассматриваются их принципы функционирования и то, как они применяются к системам рекомендаций. Проводится разностороннее исследование регрессии KNN и NMF на наборе данных MovieLens 1M для того, чтобы обеспечить тщательную оценку. В работе описаны процессы обучения модели, показатели производительности и используемые этапы предварительной обработки данных. По результатам обработки данных измеряется и анализируется прогнозируемая точность используемых стратегий с помощью эмпирических исследований, раскрывая их эффективность при применении к различным предпочтениям пользователей и категориям контента.</p> Сагедур Рахман Copyright (c) 2024 Сагедур Рахман https://creativecommons.org/licenses/by/4.0 https://oajmist.com/index.php/12/article/view/268 Mon, 15 Apr 2024 00:00:00 +0300 Модель архитектуры ИТ-решений: создание, генерация решений https://oajmist.com/index.php/12/article/view/269 <p>Рассматриваются возможные решения о построении архитектуры ИТ-решений на базе применения принципов каузальности, бифуркаций и когнитивности, а также технологий построения сценариев и выработки управленческих решений, имеющих непосредственную связь с законами информатики. Предлагаются возможные решения о разработке модели, предусматривающие: мониторинг процессов, связанных с архитектурой предприятия и архитектурой ИТ-решений; выполнение анализа результатов мониторинга; выявление предпочтений органов управления (ранжирование приоритетов); обоснование наличия неопределенности информации в возможных вариантах вырабатываемых решений. Генерация предлагаемых решений предусматривает выявление тенденций и изменений во внешней среде и внутри предприятия, технологии выработки возможных стратегий перехода от одного состояния к другому. При построении модели выработки ИТ-решений предлагается: оценить свойства, простоту и возможности архитектуры на базе использования инструмента моделирования ArchiMate; измерить влияние информационной неопределенности и субъективности на систему поддержки и принятия решений; создать вероятностно-энтропийную модель описания состояния структуры существующей и подготовленной архитектуры; исследовать наличие бифуркационных событий и процессов для последующей выработки ИТ-решений. Создание метода генерации вариантов решений предусматривает выстраивание последовательности развития событий и процессов, связанных с вероятностным содержанием архитектуры и откликом на состояние бизнес-процесса. Метод рассматривается как основа применимости архитектуры ИТ-решений для выработки многообразия вероятностно-энтропийных состояний.</p> А. С. Дулесов, Р. А. Андреев, А. А. Коновалов Copyright (c) 2024 А. С. Дулесов, Р. А. Андреев, А. А. Коновалов https://creativecommons.org/licenses/by/4.0 https://oajmist.com/index.php/12/article/view/269 Fri, 26 Apr 2024 00:00:00 +0300 Цифровая трансформация государственных учреждений https://oajmist.com/index.php/12/article/view/271 <p>В статье представлена методология построения высокотехнологичной цифровой платформы министерства здравоохранения, обеспечивающей высокое качество жизни гражданина Российской Федерации на всем её протяжении. По своим тактико-техническим характеристикам платформа уникальна, имеет распределенный реестр и децентрализованную многоранговую иерархическую структуру. Условие распределённости позволяет достичь неизменности цепочки блоков, сформированных данными, и прозрачности консенсуса легитимных пользователей электронного документооборота. Её концепцией определен ключевой элемент – искусственный интеллект, интегрированный в медицинские информационно-аналитические процессы учреждения. Серверная часть платформы ответственна за хранение, обработку, формирование и передачу электронно-медицинской документации на уровень регионального и федерального реестра данных. Отдельным узловым элементом представлена система обеспечения информационной безопасности в разрезе средств защиты больших данных, электронной подписи врача, каналов связи межведомственного взаимодействия, иных элементов – значимых в решении повседневных задач лечебно-профилактических учреждений. По результатам исследования определен ландшафт угроз цифровой платформы, возможности по её масштабированию, комплекс мероприятий по усилению мер информационной безопасности, включая направления будущих исследований.</p> В. С. Аверьянов, И. Н. Карцан Copyright (c) 2024 В. С. Аверьянов, И. Н. Карцан https://creativecommons.org/licenses/by/4.0 https://oajmist.com/index.php/12/article/view/271 Fri, 10 May 2024 00:00:00 +0300