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Abstract. Collaborative filtering (CF) algorithms have received a lot of interest in recommender
systems due to their ability to give personalized recommendations by exploiting user-item interaction
data. In this article, we explore two popular CF methods—K-Nearest Neighbors (KNN) Regression and
Non-Negative Matrix Factorization (NMF)—in detail as we dig into the world of collaborative filtering.
Our goal is to evaluate their performance on the MovielLens 1M dataset and offer information about
their advantages and disadvantages. A thorough explanation of the significance of recommender systems
in contemporary content consumption settings is given at the outset of our examination. We look into
Collaborative Filtering's complexities and how it uses user choices to produce tailored
recommendations. Then, after setting the scene, we explain the KNN Regression and NMF approaches,
going over their guiding principles and how they apply to recommendation systems. We conduct an
extensive investigation of KNN Regression and NMF on the MovieLens 1M dataset to provide a
thorough evaluation. We describe the model training processes, performance measures, and data pre-
processing steps used. We measure and analyse the predicted accuracy of these strategies using
empirical studies, revealing light on their effectiveness when applied to various user preferences and
content categories.
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N3y4denue coBMecTHON puabTpanuu ¢ noMomb0 Meroaa K-
OIMKAUIIMX cocefei U (PAKTOPHU3aAUU HEOTPULATEIbHOMN
MATPUIBI

Carenyp Paxman

Yynyunckuil ynusepcumem noumaol u meaexomMmynuxkayuu, 9ynyun, Kumat
AHHOTanus. AnroputMbel coBMecTHOW ¢uubTpaimi (CF) BbI3BIBarOT OONBIIONH WHTEpeC B

PEKOMEHAATCIIBHBIX CUCTEMAX M3-3a UX CITOCOOHOCTH JaBaTb IMEPCOHAIN3NPOBAHHBIC PEKOMCHIAINH,
HCIIOJIb3Yd HAaHHBIC O B3aHMOHeﬁCTBHH IIOJIB30BATE/IA C DJEMEHTaMU KOHTEHTAa. B ATOM cTaThe MbI
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noJipoOHO HccieayeM JBa nomyispHeix MeTona CF — perpeccuto K-ommkaitmx coceneit (KNN) u
HEOTpHIATeIbHYI0 MaTpuuHyio (aktopusanuio (NMF) ¢ menbio KOMOHHAIIMH WX TPH COBMECTHOM
¢unbTpanuu. Hama memns — OLeHUTh UX MPOM3BOAUTEIBHOCT Ha Habope manHeix MovielLens 1M u
MpeocTaBuTh MHPOpManuio 00 WX MpenMyIlecTBaX W HemocTtaTkax. B pabore maHo moapobHOe
00BsICHEHHE 3HAUCHHS PEKOMCH/IATEIBHBIX CUCTEM B COBPEMEHHBIX YCIOBHUAX TOTPEOICHHS KOHTEHTA.
H3yuaeTcsi CIOKHOCTH COBMECTHOW (PUIBTPaIMM M TO, KaK OHA HCHOJNB3YeT MpenblaylIuid BHIOOP
N0JIb30BaTeNeH It BBIpaOOTKH MHANBUIYANBHBIX PEKOMEHAAIMHA. 3aTeM JaeTcs ONMHUCaHKUe MOIX0I0B
Ha ocHOoBe KNN-perpeccun 1 NMF, paccmaTtpuBatoTcst nx npuUHIUIEI (DYHKITMOHUPOBAHUS U TO, KaK
OHU TPHUMEHSIOTCS K CHUCTeMaM pekoMeHnarmid. [IpoBoauTCs pa3HOCTOpPOHHEE HCCIEIOBaHHE
perpeccurt KNN 1 NMF Ha Habope nanubix Movielens 1M st Toro, 4To0b1 00€CIeYHTh TIIATSILHYIO
olieHKy. B pabore ommcaHbl mporiecchl OOYYEHHS] MOJENH, TOKa3aTelld MPOHM3BOJAMTEILHOCTH W
MCTIONB3yeMBbIE 3TaIbl NpeABapUTENbHON 00paboTku naHHbIX. [lo pesympraTam 00pabOTKH NaHHBIX
U3MepsieTCs U aHAIM3UPYETCs MPOTHO3UpyeMasi TOYHOCTh MCIOJBb3YEMBIX CTpaTerHii C MTOMOIIBIO
SMITUPUYECKUX HCCIICIOBAHUMN, PaCKpbiBas HUX 3(PPEKTUBHOCTh TPU MPUMEHEHUH K DPa3IWYHBIM
NPEAMOYTEHHSM T0JIb30BaTeIel M KATErOpUsIM KOHTEHTA.

Karouessle cioBa: coBmectras ¢punbrparus, KNN, NMF, ciucrema pekomeHnarmii.
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INTRODUCTION

Modern society's changing environment and the explosion of digital content call for creative
approaches to help consumers sort through the sea of choices at their disposal. In this quest,
recommender systems have become crucial tools, utilizing user interactions to provide
individualized content recommendation [1-3]. Collaborative Filtering (CF), a key technique
that relies on the idea that users who have shown similar preferences in the past are likely to
share preferences in the future [4-5] is at the core of these systems. With K-Nearest Neighbors
(KNN) Regression and Non-Negative Matrix Factorization (NMF), two well-known
techniques, this study explores the world of CF. Our research strives to reveal the complexities
of Our investigation intends to reveal the subtleties of these methods, assess their effectiveness,
and get knowledge on how practically useful they are effective recommender systems are
crucial in a time when user engagement depends on the provision of customized experiences.
These systems must continuously change to accommodate shifting user expectations and
preferences if they are to remain relevant [6]. Our study is in line with the present environment,
in which user-centric experiences and data-driven insights are crucial. Our objective is to enable
practitioners and researchers to make knowledgeable decisions in the field of recommender
systems by examining the mechanics of KNN Regression and NMF. Our work is motivated by
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the aim to evaluate the predictive capacity of KNN, and is grounded in recent developments
and trends in collaborative filtering. In order to fulfill the changing needs of consumers as
technology develops, these strategies must keep up. Our work aims to offer a timely
investigation that represents the cutting-edge landscape by grounding our analysis in
contemporary discourse and benchmarking against the most recent approaches [7].

We aim to contribute to the ongoing discussion surrounding the choice of recommender
systems in a dynamic digital environment through a thorough investigation of KNN Regression
and NMF. Our study highlights the adaptability of these strategies within the changing
landscape of content consumption by condensing the essence of these techniques and assessing
their performance. We conduct an extensive investigation of KNN Regression and NMF on
the MovieLens 1M dataset to provide a thorough evaluation. We describe the model training
processes, performance measures, and data preprocessing steps used. We measure and analyze
the predicted accuracy of these strategies using empirical studies, revealing light on their

effectiveness when applied to various user preferences and content categories.
K-Nearest Neighbors Regression

KNN Regression uses similarity as a tool to forecast consumer preferences. The model
creates predictions by locating the closest neighbors in a user-item space based on the
preferences of similar users. This strategy is based on the common sense idea that people with
similar tastes will probably score things similarly [8]. By determining the distances between
users, a fixed number of closest neighbors are chosen. The anticipated rating is then calculated
as a weighted average of these neighbors' ratings, with closer neighbors having a larger weight.
With the help of the MovieLens 1M dataset, we build and assess a KNN Regression model in
this work. The user-item matrix of the dataset serves as the basic framework for the model, with
rows denoting users, columns denoting items (movies), and cells denoting corresponding
ratings [5]. To make performance evaluation easier, the dataset is divided into separate training
and testing subsets before the model is trained. We use the mean absolute error (MAE) and the
root mean squared error (RMSE) as two commonly used metrics to assess the KNN Regression
model's predictive performance. The difference between the expected and actual scores is
quantified by the RMSE, with smaller values indicating better performance. MAE, on the other

hand, measures the typical size of prediction [9]. These metrics show how well the model can
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capture user preferences and produce accurate predictions. In order to further our investigation,
we convert the predictions based on regression into discrete ratings.

We can now explore crucial classification measures like accuracy, recall, and F1-score
thanks to this modification. These metrics provide a more in-depth assessment of the model's
effectiveness, notably in terms of its prowess in appropriately categorizing ratings into different
groups. This viewpoint offers priceless information into how well the model distinguishes
between user preferences. We gain a profound understanding of the mechanics and restrictions
of KNN Regression by carefully deconstructing its complexities and recognizing its predicting
powers. This thorough investigation offers the groundwork for understanding how KNN
Regression functions in the context of recommender systems.

For example, see Figure 1.

Algorithm 1 K-Nearest Neighbors Regression

Require: Training dataset: {(Jr,-_.y,—}};-il._ new input: Tew, oumber of neigh-
bors: K
Ensure: Predicted output: fipeq
1: Imitialize: Caleulate distances and weights
2 fori=1to N do
3 Calculate the Euclidean distance d; between ..., and x;:

d; = JE;F;l{J:m“_.:J- — 3 7)?, where D is the dimensionality of the input
space

end for

: Identify Mearest Neighbors:

Find the indices of the K smallest distances: I, = argsort({d;})[: K]

Calculate Weights:

: Calculate the weights for each neighbor based on the inverse of their dis-
tances:
w; = J—, for i € fmin

: Predict Output:

1: Caleulate the predicted ontput using weighted average of neighbors’ ontputs:

Wipi
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w
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- ey g
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Figure 1. K-Nearest Neighbors Regression

KNN Regression uses similar training data points to predict an output for a fresh input. The
method measures the separations between the new input and the existing data points, chooses
the closest neighbors, and then gives those neighbors weights. A weighted average of the
outputs of these neighbors makes up the expected output. When proximity suggests similarity,

KNN Regression is helpful for continuous output prediction.
Non-Negative Matrix Factorization (NMF)

Dimensionality reduction, a crucial component of managing big datasets, is a function of
NMF's utility. These non-negative matrices are created by breaking down the high-dimensional
0204
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user-item interaction matrix into these latent associations between users and objects. These
underlying insights are crucial for anticipating missing ratings, which helps to improve the
accuracy of recommendations. This dimensionality reduction improves computational
effectiveness and makes it easier to spot significant patterns, which eventually raises the caliber
of recommendations.

NMF has found use in a variety of corporate environments, including e-commerce and video
streaming platforms. Its capacity to find hidden relationships in data offers avenues for content
suggestion, targeted advertising, and personalized marketing. Businesses can better serve their
customers by customizing their offerings to their tastes by converting user-item interactions
into interpretable latent features.

The successful application of NMF in real-world situations serves as an example of its
adaptability. For instance, the foundation for comprehending the principles of NMF in the
context of learning object components was established by Lee and Seung's fundamental work
from 1999 [10]. Further insights into the applicability of the technique were provided by Gillis'
thorough investigation of NMF for polybasic data [11]. The relevance of NMF's contributions
to collaborative filtering and data analysis is shown by these references. As we continue our
investigation, we'll apply NMF to the MovieLens 1M dataset to gauge how well it performs in
real-world scenarios. We want to give thorough insights that support practitioners and
researchers in unlocking the potential of NMF for enhanced recommendation systems by
closely examining its predictive accuracy, scalability, and flexibility. Here is figure.2

Algorithm 2 Non-Negative Matrix Factorization (NMF)

Require: Data matrix: X € ™*", rank: r, number of iterations: T
Ensure: Factorized matrices: W e R™*", H ¢ ™"
1: Initialize:
2: Randomly initialize non-negative matrices W and H with values between ()
and a predefined maximum value.
3 fort=1toT do
Update H:
Compute the numerator: Ng = wTx
Compute the denominator: Dy = WTWH +¢
Update matrix H: H +— H® %ﬁ-, where @ represents element-wise mul-
tiplication.
Update 1
o Compute the numerator: Ny = xHT
1:  Compute the denominator: Dy = WHHT +¢
11:  Update matrix W: W+ W o %:-1—
12 end for

) B =

moe

Figure 2. Non-Negative Matrix Factorization (NMF)
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In order to enable feature extraction, NMF splits a given data matrix into two non-negative
matrices. The $W$ and $H$ factor matrices are updated iteratively by optimizing their products

to closely resemble the original matrix.
METHODOLOGY
Data Collection

The "MovieLens 1M" dataset from the Internet Movie Database (IMDb), a well-known
online destination for movies, TV series, and related content, served as the basis for this study.
The Movielens dataset is crucial for research on collaborative filtering and is an important tool
for assessing algorithmic recommendations [8, 12]. Due of its essential ability to record user-
movie interactions, the MovieLens 1M dataset is particularly important in research on
collaborative filtering. Using previous interactions and user similarities, collaborative filtering,

a crucial technique in recommendation systems, predicts users' preferences.

/ Load and preprocessuser-item matrix /

Apply K-Nearest Neighbors

Convergence?

Yes

Update user and item factors using NMF

G(‘,lll‘,l’ﬂ te recommendations

Evaluate model performance

Figure 3. K-Nearest Neighbors and Non-Negative Matrix Factorization framework.
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The user IDs, movie IDs, and rating information in the dataset are essential for building
collaborative filtering algorithms that take advantage of user behaviors for precise predictions.
The timestamps also provide the chance for temporal analysis, making it possible to examine
how preferences change over time and improving our understanding of user behaviors in
general. After that here is the figure showing the process and way.

In this study, we load and preprocess the user-item matrix, which contains user-item
interactions or ratings, to get started. The K-Nearest Neighbors (KNN) algorithm is then used
to find equivalent patterns in the data, allowing us to find users or products that are similar to
them. In the meantime, latent features from the user-item matrix are extracted using the Non-
Negative Matrix Factorization (NMF) technique, providing a thorough grasp of the underlying
data patterns. By combining user and item factors using these approaches, we produce
customized suggestions. We assess the model's performance using well-recognized metrics like
precision, recall, and F1-score to determine the effectiveness of our strategy. Additionally, we
use cross-validation techniques to guarantee the model's robustness and generalizability. This
comprehensive architecture serves as a foundation for developing efficient recommendation

systems while also advancing our understanding of collaborative filtering.

RESULT AND DISCUSSION

K-Nearest Neighbors (KNN) Performance Metrics

1.0 §

0.8 4
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Figure 4. RMSE & MAE (KNN).
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Precision, Recall, and Fl-score (KNN) for Different Classes

N Precision
W Recall
BN Fl-score

0.4
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0.0
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Figure 5. Precision, Recall, and F1 score (KNN).

The Non-Negative Matrix Factorization (NMF) model showed promise in our research.
Figure 4 and figure 5 shown that the model's low Root Mean Squared Error (RMSE) of roughly
0.63 and its low Mean Absolute Error (MAE) of roughly 0.22 demonstrate its capacity to
precisely forecast ratings and give users specific recommendations.

The NMF model showed distinct performance across rating categories in terms of the
classification metrics. With a noteworthy recall of 0.93 and a high F1-score of 0.96, it
successfully predicted ratings in category 0.0 with a high precision of 0.99. The model's
performance, however, differed when used to predict additional rating categories, with poorer
precision, recall, and F1-scores. For instance, category 1.0 had a moderate F1-score of 0.02 due

to precision of 0.01 and recall of 0.36.

RMSE and MAE for NMF Model

0.60

0.55

0.50

0.45

Value

0.40

0.35 4
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0.25 7

T T
RMSE MAE
Metrics

Figure 6. RMSE & MAE (NMF).
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Precision, Recall, and F1-score (NMF) for Different Classes
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Figure 7. Precision, Recall, and F1-score (NMF).

RMSE and MAE Comparison between KNN and NMF

—8— KNN
NMF
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0.8
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Figure 8. Comparison between KNN & NMF.

Based on the results of our experiments, we found that NMF performed better than KNN in
terms of RMSE and MAE. The RMSE for KNN was determined to be 1.13, while the RMSE
for NMF was considerably lower at 0.63. Similarly, KNN's MAE was 0.90, but NMF's MAE

was 0.22, indicating a markedly superior performance.
CONCLUSION

Finally, our research explores collaborative filtering with an emphasis on Non-Negative
Matrix Factorization (NMF) and K-Nearest Neighbors (KNN) Regression techniques. In a time
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of common digital content, these methods are crucial for providing users with individualized
content recommendations that take into account their changing interests and demonstrates
NMF's improved prediction accuracy, as demonstrated by lower RMSE and MAE values
compared to KNN Regression, by comparing KNN Regression with NMF on the MovieLens
1M dataset. Additionally, NMF exhibits promise in predicting a variety of rating categories,
demonstrating its flexibility and accuracy and provides researchers as well as professionals with
useful advice on how to design effective recommendation systems that change with user needs
and technical trends. These insights inform the creation of recommendation strategies that

improve user experiences as the digital landscape changes.
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